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1. INTRODUCTION

Simulation problems often require a random input with
specified statistical properties. This report develops a method
for generating such an input in one important case, namely when
the input is to be a stationary Gaussian process with a rational
spectral density (or equivalently, when it is to be a stationary
Gaussian Markov process). The method explicitly shows how to
simulate precisely any such stationary process on a digital com-
puter and how to test the generated data to make sure that the
output has the desired statistical properties.

In section two we show that the problem of generating
sample paths of the desired process is equivalent to the problem
of solving a certain stochastic differential equation. 1In section
three we solve this equation and compute its statistical properties.
In section four techniques for generating sample paths of the
desired process on a digital computer are discussed. Section five
develops two ways of testing the simulation.

Two appendices give mathematical justification of some
of the techniques used.

Throughout this paper the following notation will be
used: y(t) will be the stationary Gaussian process we are studying.
We assume y has zero mean. If A is a random variable, EA will be
its mean.

T
B(h) = Ey(t)y(t+h) = lim % [ y(t)y(t+h)dt
T
-T

is the covariance (autocorrelation) of y. f(A) is the spectral
density of B (or the "power spectral density" of y). Then
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( B(nh) =[ ed e yan

L fGn) = A e~ IR (n)an .

(1) {

-— 00

We assume f(A) is rational. Then since B is an even
real function so is f. Consequently

n

.12

(2) p(gn) = LBGM[T .Gt a3t
IQ(JA)I Z gi

where m<n, and P and Q have only roots with negative real parts.
Underlined capital letters are always nxn matrices.

Underlined lower case letters are column n-vectors and
X = col(xl, cee xn). I is the nxn identity matrix.

If x and y are random column n-vectors, cov(x,y) = E(gx?).

2. DERIVATION OF THE DIFFERENTIAL EQUATION

y(t) is the stationary Gaussian process (with statistical
properties defined by (1) and (2)) that we wish to simulate. In
this section we prove the following result:

m
y(t) = Z brex (K ()
k=0

where x(t) is the "unique stationary solution" of the differential
equation

(3) anx(n)(t) oo+ agx(t) = ut)
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where u 1s white noise with zero mean and covariance §(h). (By
"unique stationary solution" we mean the following: the 1nitial

conditions x(0), xl(O), cens x(n—l)(o) must be chosen from a

unique n-variate normal distribution in order that x(t) be sta-
tionary. 1In this case the statistical properties of x are uniquely
determined.)

Equation (3) may be written in matrix form: 1let
1 -
xl(t) x(t), xz(t) = x (t), ..., x (£) = x(n l)(t). Then
xp(t) = xk+l(t) if k<n, and

x](£) = =(apx (£) + a;x,(t) + ... + an—lxn(t)l///én + u(t{///an

If we let x(t) = col(xy(t),...,x (t)) and

(@]
C

l._l
o

-ag/a -a,_1/a

n

/
o S
N

Then (3) becomes

(W) x'(t) = Ax(t) + w(t)

where w(t) = col (0, ..., O, u(t)/an).

We now give an intuitive proof of the assertion given
at the start of this section. A rigorous proof of the same
assertion is given in Appendix 1.

Consider a linear system with causal impulse response
g(t) driven by white noise u(t):
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u(t) y(t)

g(t) |22y

Assuming that the system has achieved its steady state, it
satisfies

o t
(5) y(t) =[ g(a)u(t-a)da =[ g(t-a)ula)da

Clearly Ey(t) = 0. The covariance of y 1s easily computed:

Ey(t+h)y(t) =j [ g(al)g(az)6(h+a2—(x1)dald0,2

and so y has covariance

Ey(t+h)y(t) =-/r g(at+h)g(a)da

o

Taking Fourier transforms we find that y has power spectral
density |G(jw)|2 where G(jAr) = Jf g(t)e™d*at.  Hence if we
let G(Jr) = P(jr)/Q(jr) the line;: system (5) with

g(t) = 5% j’w G(jx)ejxtdk has an output process y(t) with the
desired pow;: spectral density (2).

Returning to (5) and taking Fourier transforms

(a(jn) =[ eI P utrat, () =[ e I by (t)at)

we see y(jr) = u(jr)P(Jjr)/Q(jr). Using equation (2) we see that
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n n
| Y a0 E 560 = T b g0 Dagn
k=0 k=0

Taking inverse transforms this give

n m
(6) Y ay ) = Y patm(h)
0 0

n
Therefore if x(t) is a stationary solution of E: ak(k)(t) = u(t),

(k) k=0
clearly y(t) = E:bkx (t) solves (6), as desired.

A mathematically rigorous proof of this result is
given in Appendix 1. From a mathematical point of view a
rigorous alternative proof is desirable for the following reasons:

1. White noise has mathematical meaning only as the
limit of a sequence of Gaussian processes with
decreasing correlation times. Hence equation (5),
for example, is mathematically meaningless unless
a more advanced approach is used.

2. Whether or not the linear system in question has
a unique steady state when driven by white noise
is not mathematically clear.

3. Taking Fourier transforms of (5) is not in general
possible. Hence the replacement of (5) by (6)
needs more justification.
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3. STATIONARY SOLUTIONS OF RANDOM DIFFERENTIAL EQUATIONS

In the last section we reduced our simulation problem
to the problem of simulating the stationary solution of the
linear stochastic equation (4) x'(t) = Ax(t) + w(t) where A
has only eigenvalues with negative real parts. In this section
we compute the statistical properties of the stationary solution
of a slightly more general equation, namely

(7) x'(t) = Bx(t) + R(%t)

where R(t) = Col(Rl,...,Rn) is some stationary process with zero

mean and B is a matrix all of whose eigenvalues have negative
real parts. The results are then specialized to our case.

Let #(t) be the matrix solution of &'(t) = Bg(t),
#(0) = I. The following properties of & are well known (see
any book on ordinary differential equations, for example [2]).
(
(

a. = col(@lk(t),... @nk(t)) solves g' = Bg ,

)
= (N ] Ny /4.1.1,\ 1 in k-th PR VI
S AUgeeeygdlgeesyyUy \L0OE L n L-Tn posivion

t
0

~
|

by oy
'_J

b. If x(t) solves (7) then

(8) x(t) = ¢#(t-a)x(a) + 2(t-s)R(s)ds .

We now show that not only does (7) have a unique
stationary solution but x is a stationary solution of (7) if
and only if

(9) x(t) = ¢(t-s)R(s)ds

o 0O

This is a consequence of (8): If x is a stationary
solution then Var (x(s)) is a constant, and since |e¢(t-a)| - 0
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as a»-» we get (9). Conversely, as defined by (9) x(t) is
stationary if R(s) is and is even strictly stationary if R
is Gaussian. In fact

T
Ex(t) = 2(t-s)ER(s)ds = 0
tl t2
(10) cov(x(t,),x(t,)) = 8(t =5 )T (5,-58,)0" (t,=5,)ds ds,

where I(t) = E(B(s)ﬁ?(s+t)). This clearly is a function of t{-t,

only. Hence X is (second order) stationary. If R is Gaussian so
is x and in this case second-order stationarity implies strict
stationarity.

If T or ¢ are complicated functions the integral in
(10) may be impossible to compute. For example, if the matrix
B is very large, computing ¢ is very hard. In the important
special case where our matrix equation (7) arises from a linear
n-th order equation

(11) x™) (£) + bn_lx(n—l)(t) -ee *+ byx(t) = R(t)

with stationary driving function R(t) Karhunen [3] gives an
alternative method which may be feasible when the computation
of (10) is not feasible. This method is described in Appendix 2.

We now specialize (10) to the special case (U4) where
the driving function is white noise. In this case (9) becomes

t
X(t) = jf o(t-s)w(s)ds. D = E(K(O)HT(t)) is zero except for

dnn = G(t)/ai. Hence we have the following complete characteriz-

tion of the solution x of (4).
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t+h -t
E f [ 2(t+h—sl)ﬂ(sl)_@T(sg)_T(’G-s)dslds2
t
jr 2(t+h—S)QgT(t-s)ds

(1) Ex(t%)

(2) cov(x(t+h)x (%))

Hence

(13) cov(z(t+h)§T(t)) =[ 2(s+h)D_®T(s)ds
0

or (component-wise)

E(xi(t+h)xj(t)) = (jr @i(s+h)¢ﬁ(s)ds ai
0

where ¢ = (¢ij).

(3) x is Gaussian.

4, DIGITAL APPROXIMATION OF x(t)

For a given step size T we wish to construct sample
paths x(nT), n=20,1, ..., Nwith statistical properties agreeing
with those of x in equation (13). We start by choosing x(0)
from an n-variate Gaussian distribution with zero mean and

variance (from equation (13)) Var(x(0)) = J{ gﬁv)Qg?(v)dv .
0

By equation (8),

(n+1)T
x((n+t1)T) = o(T)x(nT) + J[ 2((n+1)T=-s)u(s)ds
nT

or
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(14) x((n+1)T) = o(T)x(nT) + w_ .4

where w _,, is a Normal random variable, independent of x(nT),
with mean 0 and variance

3(s)Be’(s)ds :

If the state vector 1s large, the computation of ¢
is difficult. However, if it is possible somehow to find the
initial distribution cov(x(0), x(0)) we point out that one
could then do a straighforward numerical integration of (7),
or use the Runge Kutta method of solving ordinary differential
equations numerically. In this case the driving function R(t)

is replaced by a sequence {R(nT)} of independént normal random
variables.

One case where the initial values can be computed
directly even for large n is the n-th order linear case dis-
cussed in Appendix 2.

We conclude this section by outlining a method for
generating an n-dimension normal random vector x with a given
covariance matrix I'. This is done in two stepS'

(1) Generate an n-dimensional random vector n with
independent components so E(QET) = I.
(2) Make a linear transformation x = Cn with an

appropriate deterministic matrix C. To discover
the proper form for C we reason as follows: 1if

x = Cn. then E(ng) = E(Cnn Ty = CC. Hence C
need only satisfy gg? = T.

C may be taken to be a lower-triangular matrix and

constructed as follows: Let T = CCT, r = (Yij)’ C = (C,,).

13
~Since Cij =0 if i < Jj, 1t is easily seen that the Cij can be

found recursively as follows:
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Y11 11 11

Yix T 211%1 k1 = Yix/211

and in general the i-th row of C can be determined from the
equation

Min(i,J)

Yig = §: Cik Cjx
k=1

which can be solved for Cij successively.

5. TESTING THE DIGITAL SIMULATION

We wish to test the sequence {x(rT)} generated by
equation (14) to see if its statistical behavior agrees with
that calculated thecoretically in section 3. 1In essence we are
just testing the random number generator used to generate our
"white noise" sequence w - 1if we had a perfect random number

generator, our sequence §(rT) would have precisely the desired
statistical properties. Since this will not be, our sequence
will vary from that desired.

We suppose that M sample paths of x are available,
gl(rT), 52(rT), ceey gM(rT) where r=0, 1,..., N and
gk(rT) = col(x?(rT), cees xi(rT)). We assume that these sample
paths are truly independent. Define pij(kT) = E(xi(O)xj(kT)),

and let p(kT) = (p; (KT} ;4

There are four statistical properties of x we would
like to test--stationarity, normality, proper mean, proper
covariance. There seem to be no useable tests of stationarity,
but this can be indirectly checked through the mean and covari-
ance functions. Testing for normality is a very well known
statistical problem. We refer the reader to [4], for example,
for information.
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There are two alternate sets of statistics one can
use to test the mean and covariance of x. The first of these
is

M
r x(rT) = % E: ‘ﬁk(rT)

k=1
(15) ﬁ
M
Y .EiJ(PT,(r+R)T = % E: x?(rT)x?((r+2)T)
k=1

We let p(rT,(r+2)T) be the matrix (Eij(rT,(r+k)T)).

The second set of statistics is

. N
| X< = N%T E: x5 ()
2=0
(16) {
N-r
L B]'_,fj(rT) - m’%?f Z xli{(JLT)xl;((2+r)T)
=0

Let g5(rT) = (8, (zT))]

»J=1

An evaluation of these two approaches 1s given later.
First we compute the means and variances of the statistics.

Clearly E(x(rT)) =I% Z Ex(rT) = 0. We calculate
k

the variance of x(rT) component by component:

M

(17) E(ii(rT)Ej(rT)) = ﬁ%

T M=

1e=1

Hence Var(x(rT)) = # p(0)

=l

E(x?(rT)xl(rT)) = Ell___

(0)
J M )
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The expectation of p(rT,(r+2)T) = p(2T) obviously.
The variance is given component by component:

(18) By (07, (r)T) = pyy (10)% = oy, (0)py4(0) + pf(0)]

To prove this we compute

k k k k
(P, . (2T, (r+2)T))? = —1-2 Z X, T (D) x, T ((r+ )T x, 2 (rT) x, 2 ((r+2)T)
13 I J 1 J
M
1 k k 2
= z GE @D K ((r42)T))

k=1

M

k, K,
E: 2: (rT)x ((r+£)T)xi (rT)x, 2 ((r+2)T)

To compute The expectation of these terms we use a

characteristic function argument. If Vis ..+, V,  are any
1t vy+e 4t v ]
random variables and (tl,...,tn) = Ee and
k k k

= k 1 ny _ 3
k-klfk2+...+kn then (1) E(x1 sea X ) = % X $(0,0,...,0).

1 n

ot,7...3¢t
1 n

Applying this

E(py 4 (rT, (r+0)T))? ;%[M(pii(O)pjj(O)+2p§j(2T)) + MQ-1) (pF, (2T)) ]

%[pii(o)pjj(o) + pij(zT)] + pij(zT)

from which (18) follows immediately.
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We now turn to the statistics (16). Clearly
E(z#) =0, E(Bii(rT)) = pij(rT) Hence the statistics are
unbiased. Cov(xX ) will be computed term by term.

E(xk—k) = (x ( T)x (T) + 2 Xy (2 T)x (2 T)
(N”) Z z-1 222-0
1l
= ——=— | (N+1)p,.,(0) + 2 (N+1-2)p,, (2T)
(N+1)2 1 2-_:1 1
So
N
(19) E&li‘?; = F}T pyy(0) + 2 Z (1-337) Py, (2T)
=1

To compute the variance of B?j (rT), note that if

z(t) = x?(t)x?(t+rT) - pij(rT) - pij(rT), x(t) is stationary
with Ez = 0 and

N=r N-r
I

Var(Bij(rT)) = (EIT:;

E(z(le)Z(lzT))

21=0 22=O

But an argument exactly like those used above then shows that

N-r

Var(s 45 (r1) = iz [EG20) + 2 ¥ (r-ph)B(2(0) 2 (ar))
=1
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But it is easily seen (agaln by using characteristic)
functions) that E(z(0)z(sT) = pii(zT)ij(zT) + pij((2+r)T)pij((2—r)T)
and we have

(20)  var(g¥, (rT)) ——l:— p,; (0)p,.(0) + p2 (rT)
i3 N+I-r |*ii JJ 1]

N-r
+ ) Gk (py, 0TIp, , (am)
2=1

-+

pij((z+r)T)pij((z—r)T))

In order to use the statistics (15), the following
steps should be followed:

1. Each time a new sample path 5? is generated the
number'{ﬁk(rT)} must be preserved.

2. When a sufficient number of sample paths_have been
computed, form the statistics x(rT) and pij(rT),
r=0, 1, ..., N.

3. x(rT) should have mean zero and variance given by
7. Being the sum of independent normal random
variables x(rT) should be normal. Hence a compari-
son of the observed x(rT) and the standard devia-
tion is a test of system performance. Similarly,
pij will be approximately normal for large M by

the central 1limit theorem, and hence a standard
deviation test can be applied to it, using (18).

In order to use the statistics (16), the following
steps should be followed:

1. During the computation of each sample path Ek the
statistics should be cumulated, and stored at the
end of each run.
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2. After each run, a standard deviation test on zk

can be performed; ik should be normally distributed

with mean and variance (19). Unfortunately, the

distribution of Bij is not known and hence the only

test that can be made each sample run would be to
use Chebyshev's inequality. This is notorously
pessimistic and will give useable information only
if N 1s very large. However,

3. After a number of sample paths have been created
we can form the statlistics

Since the BX are independent B(rT) should be
normally distributed with mean pij(rT) and

Var(gy, (r1))
4 :

variance

Each of the statistics (15) and (16) have some
advantages. The distributions of the statistics (15) are

more easily computed, especially when compared to Egj(rT).
However, many more numbers need to be preserved than are

needed in (16)--essentially N +N versus 2N. Also the pro-
gramming involved to compute (16) should be much less than
that required to compute (15). A second factor to consider
is the type of assumptions underlying our analysis of each
set of statistics. The statistics (15) may be analyzed
essentially assuming only sample path independence. The
analysis of the statistics (16) assumes in addition the sta-
tionarity of the process.

Based upon this analysis, it is recommended that

1. Primary reliance be put on the statistics (16).
However, to check the stationarity assumption a
few values of Pij should be computed, especlally

the cases r=0, ¢=0 and g=N.
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2. After 1nitial data has been analyzed a re-evaluation
of the statistical techniques belng used should be
made.

1033-JLS-jr Q?S L. Strand

Attachments
Appendix 1, 2
References
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APPENDIX 1

DERIVATION OF THE DIFFERENTIAL EQUATION

_ In this appendix we give a proof of the result stated
at the start of section 2: there is a unique probability
distribution from which the initial conditions for equation
(3) may be chosen which leads to a stationary solution of (3).

L m ,

If x(t) i1s this solution then y(t) = }: b x(k)(t) is the
desired stationary process. k=0 k

Since white noise is mathematically treacherous we
replace (4) by

(4r) x'(t) = Ax(t) + w, (t)

where wb(t)‘= col(O,...,O,uk(t)/an)) and uw, is a stationary

Gaussian (Markov) process with mean 0, covariance R, (t) = ke

2
and (hence) spectral density £ (1) = LS . Clearly as k»= u
k k2+A2 k

el
vl

behaves more and more like nolse.
Let g(t) = 2= [ p(irn) SaGn et aa

Because of the special properties of P and Q, P(s) = P(s),
Q(s) = Q(s), and the location of the roots of Q, g(t) is easily

seen to be real and g(t) = 0 if t<0. Also |g(t)]| ¢ ke St for
some s>0.

t
Consider Vk(t) J( g(t—s)uk(s)ds. Let
0

t+h
Tk(t,t+h) = E(Vk(t)vk(t+h)) = jr g(t+h~vl)g(t—v2)Rk(vl—v2)dvldv2.
0J0
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h 0
As toow rk(t,t+h) > T (h) = J[ Jr g(h—vl)g(—v2)Rk(v1—y2)dvldv2

I, has spectral density f(A)f, (). Hence asymptotically

vk(t) is stationary with spectral density f(A)fk(A). As

i asymptotically is (statistically) just y(t), the
desired process.

kK » o v

t
Since v, (t) = Jr g(t—s)uk(s)ds, taking Laplace
] 0
transforms Qk(s) = jr e_Stvk(t)dt = P(s)/Q(s) ﬁk(s) if s>0.
0

(Uk(t) 1s almost surely transformable because

E|ﬁk(s)| SJ(Q e_StE|uk(t)|dt = E(|uk(0)|)/s.)
: 0

1-n

N . -n
S +...+an)vk(s) = (bos

-n M=1Ny ~
Hence (aos ta, +...+bms )uk(s)

aovi_n)(t) + alvél-n)(t) toe 4 oa v (8)
(21)
= boué—n)(t) + ... 4 bmuim—n)(t)
where

t
t
-1
vo () =[ v(s)ds, V—n-l(t) =[ v (s)ds, etc.
0

0
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Now conslder the stochastlc differential equation
a g™ (E) + ...+ 2 E(t) = u (t)
n e 0 k

This is equivalent to the matrix equation (4') x'(t) = Ax(t)+w, (t)

If ¢(t) is a solution of the matrix equation ¢' = A¢, ¢(0) = I
then

t
(22) x(t) = ¢(t-a)x(a) + Jr 2(t-s)w, (s)ds
~Ja

Setting a=0, x(a)=0, it is clear that xn(t), the
last component of x, solves aox(_n)(t) +...+ a x(t) = uil(t)

if xn(O) = ”’Xn-m(o) = 0. Since (21) has a unique solution
n
with specified initial condition we see that vk(t) = Z% bjxj+l(t)

if x(0) is appropriately chosen. But since A has only eigen-

values with negative real parts, |¢(t)]| = ke~ % for some 00
and it is easily seen that no matter what x(0) 1is x(t) 1is
asymptotically the same. Hence for any initial condition

b.x,.-(t) 1is as i .
h-'jXJ+L(t) is asymptotically stationary with density £(3)f, (1)

Now let a»-= in (6). Clearly x(t) is stationary if
t
and only if x(t) = Jr o (t- s)w (s)ds. Hence (22) has a unique

stationary solution. If x is stationary E:bj J+1(t) will be

stationary and since it tends toward the desired stationary
process 1t must in fact be the deslired process. If we let

m
v (t) = Z: byXy41(t) where x = (xq,...,x,) is the unique \\NE1BD79
stationary With spectrum £(A)f, (A\). Letting k+~ we then getﬂ\% A~ £2

<

the desired result. (S Q >
R T
“‘)CO 139 o
(?l"‘ ‘,\E‘C?SI :\c\\,\ﬂ h\ :
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APPENDIX 2

KARHUNEN'S METHOD

In this appendix we show how to compute the
statistical properties of the solution to a constant coef-
ficient linear ordinary differential equation with a sta-
tionary stochastic driving function.

Any statlonary process x(t) has a spectral
representatioﬁ x(t) = .Im el by (A) where z(A) 1s a sto-

chastic process with orthogonal increments. The correlation
function Bx(h) = E(x(h)x(0)) is also known to be represent-

able in the form Bx(h) = j’ eikhdFX(x) where F is some

monotone function of bounded variation. F and Z are
related by F _(A+ax)-F_(1) = E[z(x+r2)- z(x)l It then

follows that for any determined Z —1ntegrable functions f
and g

E f(x)dzx(x)[ g(ﬂdzx(ﬂ =[ f,(x)gZdeFx(x) .

Karhunen's result can now be sta
unique stationary solution x(t) which has

w ei tdzR(A)
x(t) = n-1
o (ix)nbn_l(ix) +oootb 1r4Dbg

(zp(X) 1s the spectral process for R(t)). Hence
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® irxt -ixt
Tl —hr2 dr, (1)
cov(x(tl)x(tz)) = jr e e R

n n n-1
(1) 4o tby (A1) 74b L (~1A) 77 T4 L 4b

If R(t) has a natural spectral density fR(A) this becomes

(a)dx

covi{x(t+h)x(t)) = f e:“‘h £
R

o l(1x)n+bn_l(n)n‘1+...+b0|2

More generally the covariance between derivatives of
X can also be computed: if 0 £ k, & € n

® k ¢ iAh
(23)  cov(x'¥) (t+n)x%) (¢)) =[‘ (1r) " (=dr) e £ (1) A

. i(ix)n+...+b012

This 1s often much more easily computable than is (10), especially
in the case h=0.
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